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Abstract: Allocating a limited set of resources equitably and efficiently to agents each with their own preferences is a general 

problem of considerable significance. Many examples of this problem are commonly found, among which we can cite the 

construction of schedules, the sharing of communication networks, the management of airport resources involving several 

companies, the sharing of airspace between different users, sharing of satellite resources. In the context of constraint programming, 

we propose an algorithm solving the following problem: allocate in an equitable and efficient way a finite set of objects to agents 

each having their own utilities, under admissibility constraints. The algorithm calculates an allocation maximizing the leximin order 

on the utility profiles of the agents. We also describe the field of application that motivated this work: the sharing of satellite 

resources. We extract from it a simple and precise problem of fair allocation, which serves as a basis, thanks to a generator of test 

sets, for the evaluation of the proposed algorithm. Two implementations of the algorithm are compared, one in "pure" constraint 

programming, with Choco, the other in mixed linear programming with Cplex. 
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1. INTRODUCTION  

Allocating a limited set of resources equitably and 
efficiently to agents each with their own preferences is a 
general problem of considerable significance. Many 
examples of this problem are commonly found, among 
which we can cite the construction of schedules, the 
sharing of communication networks, the management of 
airport resources involving several companies, the sharing 
of airspace between different users, sharing of satellite 
resources. 

In this article, we approach this problem with four 
restrictive assumptions, but which still leave a very wide 
field of application: 

1) the resources are discrete, finite, and come down to 

distinct, indivisible objects in finite number. 

2) An agent preference on eligible allocations is 

expressed numerically. 

3)  We are looking for fair and efficient allocations - 

the meaning of these words will be clarified and 

discussed later. 

4) The search for a satisfactory allocation is carried 

out centrally by an "arbitrator" who is supposed to 

be fair and impartial and obeys principles accepted 

by all agents.  

 

In other words, we are not interested here in allocation 
or negotiation procedures distributed among agents. This 
marked economic problem affects several active research 
fields: Operational Research (OR), Artificial Intelligence 
(AI), Microeconomics, Social Choice theory. Our 
contribution draws on these different areas. From the last 
two we borrow the idea of utility to translate numerical 
preferences, and the comparison by the leximin order to 
reflect the requirement of fairness and efficiency. OR and 
AI provide us with the framework for constraint 
programming, in which we provide a simple, centralized 
algorithm for finding leximin-optimal allocations. 
Numerical preferences and utilities Let be a finite set of 
admissible alternatives S, in which an arbiter must choose 
an alternative involving n agent, each having its own 
preferences. The most classic model of this situation is 
that of welfarism (see for example [13, 18]). According to 
this model, which we adopt here, the arbitrator's decision 
elements are entirely contained in the data, for each agent 
and for each alternative, of his level of "well-being". This 
level is measured, in the cardinal version of the model, by 
a numerical index measuring the individual utility ui (s) of 
agent i for the alternative s. It is assumed that the 
individual utilities are comparable between agents (they 
are given on a common scale of utilities). To each 
alternative s therefore corresponds a utility profile hu1 (s), 
. . ., one (s) i and the comparison between two alternatives 
is made on the sole basis of the two associated profiles. 
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A convenient way to compare individual utility 

profiles is to aggregate each into a collective utility index 

representing the collective welfare of the agent firm. 

Thus, to each alternative s ∈  S will correspond a 

collective utility uc (s) = g (u1 (s),..., Un (s)), where g is a 

well-chosen aggregation function. An optimal decision is 

one that maximizes this collective utility. 

2. FORMEL SETTING 

The constraint programming framework is widely 
used in solving combinatorial problems as diverse as 
scheduling, planning, and frequency allocation problems. 
This paradigm is based on the notion of a constraint 
network. A constraint network is formed by a set of 
variables X = {x1,..., xp}, of a set of domains D = {dx1,. . 
. , dxp}, where dxi is a finite set of possible values for xi 
(we 

suppose that dxi ⊂ N, and denote by xi = min (dxi) 
and xi = max (dxi)), and a set of constraints C. Each 

constraint C ∈ C specifies a set of allowed tuples R (C) 

over a set of variables X (C). An instantiation v of a set S 

of variables is an application which to any variable x ∈ S 

associates a value v (x) of its domain dx. If S = X, this 

instantiation is complete, otherwise, it is partial. If S ′ 

(S, the projection of an instantiation of S on S ′ is the 

restriction of this instantiation to S ′ and is denoted v ↓ 

S ′. An instantiation is consistent if and only if it does 

not violate any constraint. a constraint network, the 
problem of existence of a complete instantiation 
consistent with this constraint network is called the 
Constraint Satisfaction Problem (CSP) [16] and is NP-
complete. solution of the CSP There is a variation of the 
CSP in optimization problem (resulting from the max-
CSP extension of constraint satisfaction problems), in 
which a variable o plays the role of objective variable. of 
this optimization problem is a coherent complete 
instantiation bv of the constraint network such that bv (o) 

= max {v ′ (o) | v ′ coherent complete instantiation}. 

Let - → x = hx1,. . . , xni a vector of integers; we 

denote - → x ↑ = hx ↑ 1,. . . , x ↑ nor the non-

descending ordered version of this vector. We define the 
leximin order on the integer vectors. 

3. PROPOSED ALGORITHM 

The principle of Algorithm 1 is to iteratively calculate 
each component of the vector corresponding to the 

ordered values of the leximin-optimal instantiation of - → 

u. For this, we introduce in lines 3 and 4 a vector of 
optimization variables, the role of each variable yi being 
to calculate the value of the index i of the leximin-optimal 

(we will note m = min {ui | 1 ≤ i ≤ n} and M = max {ui 

| 1 ≤ i ≤ n}). To each iteration i of loop 6..10, we add a 

cardinality constraint corresponding to the component 
being calculated (line 7), and we calculate (line 8) the 
maximum value ofSupervised learning Supervised 

learning responds to this need to integrate expert 
knowledge. Indeed, a supervised detection model is 
constructed from labeled data provided by the expert: 
mild events, but also malicious events to guide the 
detection model. The learning algorithm will 
automatically look for the points allowing to characterize 
each of the classes or to discriminate them to build the 
detection model. Once the detection model is learned on a 
training dataset, it can be applied automatically to detect 
malicious events.  

Thanks to supervised learning, the security operator 
supervising the detection system can easily participate in 
improving the detection model based on the alerts that he 
analyzes. Indeed, false alerts can be reinjected to correct 
the detection model and thus avoid generating the same 
false alerts in the future. The real alerts can also be fed 
back into the model to let it follow the evolution of the 
threat. Thus, security experts do not give control of the 
detection system to an automatic model, but they actively 
supervise it to improve its performance over time [16]. 

Also, supervised learning is guided by malicious 
examples provided by the expert, which reduces the rate 
of false positives compared to the detection of anomalies. 
Supervised methods are therefore to be preferred when 
labeled data are available to train the detection model. 
However, these methods must be applied taking into 
account the operational constraints of the detection 
systems. The detection model must be able to process data 
in real time, and the false positive rate must remain below 
a certain threshold to prevent the security operator from 
being overwhelmed by false alerts.  

Finally, the administrator must have confidence in the 
model to put it into production, and the operator must be 
able to understand the alerts generated. In the rest of the 
paper, we give a methodology so that machine learning 
meets these constraints, and so that it can be integrated 
into detection systems to better detect new threats. the 
variable yi such that the current constraint network (which 
corresponds to the initial network added to the variables 
yk and the cardinality constraints of the preceding 
iterations) has a solution. The variable yi is set at this 
optimal value (line 9) for all subsequent iterations. Line 
10 safely restricts the domain of the next variable yi + 1; 
however, the tests show that it does not significantly 
influence the computation times, certainly because the 
constraint propagation is able to filter very quickly this 
part of the domain of yi + 1. 

Moreover, for all j i + 1, dvi + 1 (-! U) ↑ j dvi + 1 (yj) 

(otherwise at least one of the AtLeast constraints is 

violated). By noting that an allowable allocation for (X ′
, D ′ , C ′) at iteration i + 1 is also admissible at 

iteration i (because between two successive iterations we 
only add a constraint and reduce the domain of a 

variable), we deduce that we cannot have dvi + 1 (-! u) ↑ 

j> dvi + 1 (yj). Indeed, in this case, since dvi + 1 (yj) = b 
vj (yj) (for j <i + 1, the domain of yj is a singleton), dvi + 
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1 would have been strictly better than b vj for yj at 
iteration j, and if maximize is correct, it is not possible. 

 

So 8j i + 1, dvi + 1 (-! U) ↑ j = dvi + 1 (yj), which 

proves the first equality. The extension of b vs which 

affects the value b vs (-! U) ↑ i + 1 to yi + 1 is feasible at 

iteration i + 1 (it satisfies, in addition to the other 
constraints, the AtLeast constraint of the iteration i + 1). 

So dvi + 1 (yi + 1) b vs (-! U) ↑ i + 1. If we had dvi + 1 

(yi + 1)> b vs (-! U) ↑ i + 1, then the projection of dvi + 

1 on X would be a solution of this constraint network such 

that 8j <i + 1 , dvi + 1 (-! u) ↑ j = b vs (-! u) ↑ j and dvi 

+ 1 (-! u) ↑ i + 1> b vs (-! u) ↑ i + 1, so a solution 

leximin-greater than b vs, which is not possible. We 

therefore have dvi + 1 (yi + 1) = b vs (-! U) ↑ i + 1, 

which completes proving (Hi + 1). By induction, we 
therefore have: (1) cvn is a solution of the constraint 
network at iteration n, so a fortiori, its projection on X is a 

solution and (2) for all i, cvn (-! U) ↑ i = b vs (-! u) ↑ i, 

so cvn (-! u) and b vs (-! u) are leximin indifferent. So the 
instantiation returned by the algorithm is indeed a solution 
of the [Leximin-] problem. If constraint programming 
lends itself particularly well to the implementation of this 
algorithm, the cardinality meta-constraint used in the 
algorithm is also expressed in the field of linear 
programming [10, p.11] thanks to the introduction of n 

variables 0–1 {1,..., n}. The meta-constraint AtLeast 

({x1 ≥ y,..., Xn ≥ y}, k) is equivalent to the set of linear 

constraints {x1 + 1y ≥ y,. . . , xn + ny ≥ y, Pn i = 1 i ≤ 

n - k}. 

4. APPLICATION TO A PROBLEM OF SHARING 

SATELLITE RESOURCES 

We now describe the application that motivated this 
work, and which we used to experiment and evaluate the 
proposed algorithm in a realistic situation. 

A. Description of the application 

The application concerns the joint operation, by 
several agents (countries, international organizations...), 
Of a constellation of Earth observation satellites. The 
mission of this type of satellite is, as shown in Figure 1, to 
acquire photographs of the Earth, in response to requests 
for photographs filed by agents. These agents deposit, at 
the limit of the satellite visibility corridor, photographs in 
the process of being acquired orbit photographs not 
acquired photographs acquired Figure 1 - Acquisition of a 
photograph by an Earth observation satellite. from a 
common planning center, photography requests valid for a 
given day. The overall planning of the shots of all the 
satellites in the constellation is organized by successive 
time intervals, generally 1 day. The planning center 
therefore determines, among the requests concerning a 
given day, the set of requests that will be satisfied, that is 
to say all the photographs that will be acquired on that day 
by the constellation. This set of satisfied requests 
constitutes a daily allocation of requests to agents. The 
physical operating constraints and the large number of 
requests concerning certain areas generate conflicts 
between requests. It is therefore generally impossible to 
simultaneously satisfy all the requests filed for a given 
day. In other words, only a subset of the requests will be 
able to be satisfied. All these constraints define the set of 
eligible allowances. Here are some orders of magnitude 
regarding the real problem. The agents are between 3 and 
6. Several hundred applications are candidates each day, 
among which 100 to 200 will be satisfied. The demands 
of an agent are of unequal importance. Each agent 
translates the relative importance of its requests by 
associating to each a weight, which is a positive or zero 
number 4, and implicitly corresponds to additive 
preferences: given two sets of requests of an agent whose 
sum of the weights is identical, the agent concerned is 
indifferent to obtaining one or the other set of requests. 
The individual utility of an allowance for an agent is the 
sum of the weights of its demands satisfied by the 
allowance. A utility standardization device - details of 
which do not concern this article - is used in order to 
make individual utilities comparable. Here we implicitly 
consider normalized utilities (and weights). Not all agents 
contributed equally to the funding of the constellation; the 
“right of return on investment” provided for each is 
therefore different. There are different ways of taking into 
account these different rights. We translate this inequality 
here by consumption constraints (in addition to the 
eligibility constraints): each agent is entitled to a 
maximum consumption of resources per day, this 
maximum being different for each agent. Beyond taking 
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these unequal rights into account, the allocation of 
requests to agents must be fair. Quite different solutions to 
this problem have been proposed in [15], then in [6]. To 
meet the fairness requirement, one of the proposed sharing 
protocols is to choose an allocation that maximizes the 
leximin order on the individual utility profiles. 

B. Fair allocation problem 

We have drawn from this application a simplified 
problem of equitable allocation of objects to agents. It 
takes the form of an extension of the Leximin-Optimal 
problem described in section 2. The objects correspond to 
the demands of our application. The conflicts between 
demands are modeled in an approximate but suitable way 
in the form of "generalized volume constraints", linear. 
Note that in this problem (1) all the objects will not 
necessarily be allocated, and (2) the same object can be 
allocated to several agents 5. Here is the formal 
description of this fair allocation problem. First the data: 

- A is a set of agents. 

- O is a set of objects to be allocated to agents. 

- wio, positive or zero number, is the weight 
assigned to the object o by agent i; 

- ro is the resource consumed by the object o. 

- rmax is the maximum consumption of resources 
authorized for agent i; 

- This is the set of generalized volume constraints. 

- vco is the volume of the object o in the constraint 
of generalized volume c. 

- vmaxc is the maximum volume in the generalized 
volume constraint c. 

We now define the following variables: 

5. What is possible in our application. 

- xio = 1 if the object o is allocated to agent i, and 0 

otherwise, o ∈  O, i ∈  A. The possible 

assignments of the variables xio represent the set 
of possible allocations (among which are the 
admissible ones). 

- ui = Po∈O xio · wio is the individual utility of 

agent i, i ∈ A; 

- so = maxi∈A xio = 1 if the object o is allocated 

to at least one agent, and 0 otherwise. The 
problem is to find an allocation x maximizing the 

leximin order on the huiii∈A utility profiles, 

under the following admissibility constraints: 

- wio = 0 ⇒ xio = 0 (objects of zero weight are not 
allocated to an agent having assigned this weight) 
6; 

- Po∈O xio · ro ≤ rmaxi, for all i ∈ A (resource 

consumption constraints); 

- Po∈O so ·  vco ≤  vmaxc, for all c ∈  C 

(generalized volume constraints). 

5. CONCLUSIONS AND PERSPECTIVES 

We have studied the general problem of equitably 
allocating a set of indivisible goods to agents, in the 
presence of any admissibility constraints, each agent 
having its own utility function on the eligible allocations. 
We 

We have translated equity by a Paretoeeffective 
particularization of the maximin on the utilities of agents: 
the notion of leximin-optimal allocation, which potentially 
applies to all multi-agent allocation problems for which 
the notion of equity has a strong meaning. The main 
contribution of this article is the proposal of an algorithm 
for calculating a leximin-optimal allocation, in a 
constraint programming framework (PPC), based on the 
use of the cardinality meta-constraint AtLeast. The 
general framework of PPC is particularly interesting here, 
because it allows to separately describe the algorithm 
dedicated to leximin, and on the other hand the utility 
functions of the agents and the admissibility constraints 
specific to each potential application. In a context where 
many of the eligibility constraints are rarely set in stone 
and evolve with the life of the application, tools like PPC 
allow you to adapt quickly without changing everything. 
This algorithm is precisely proposed in the context of a 
real application: the sharing of satellite resources. From 
this application we extracted a simplified multiagent 
allocation problem for which we built a parameterized 
random generator of instances. This allowed us to test two 
implementations of the proposed algorithm, in PPC (with 
Choco [14]), and in PLNE (with Cplex [12]). The results 
obtained show a clear advantage in favor of PLNE, which 
can be explained by the specificity of this framework 
compared to PPC in our case. Several avenues remain to 
be explored to make the PPC implementation more 
efficient: heuristics for choosing the variables to 
instantiate and for choosing the values of the domains, 
and procedures for filtering the domains of Variables 
(faster detection of inconsistent or sub-optimal solutions) 
among others. The article is one algorithmic approach to 
the problem among others, perhaps more effective. Even 
if we have only considered exact methods here, we can 
use, for more difficult instances, incomplete methods like 
those of [20], or [21, 1] mixing linear programming and 
taboo search. We hope that our instance generator (online) 
will allow teams interested in the problem to propose and 
validate other approaches. 

Among the possible consequences of this work, let us 
quote: 

- the experimental comparison of the proposed 
algorithm with the other algorithms mentioned in 
section 5. 

- the study of more flexible and general approaches 
to equity, replacing the leximin order by a 
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parameterized collective utility function making 
compromises between egalitarianism and classical 
utilitarianism. 

- the application of the algorithm to other practical 
fields, such as the construction of time schedules 
or the sharing of airport resources. The authors 
thank the reviewers for their insightful comments, 
Jérôme Lang and Jean-Michel Lachiver for their 
stimulating discussions on the subject, and Simon 
de Givry for his advice on Cplex. 
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